
So�ware Development (cs2500)

Lecture 54: Summary

M.R.C. van Dongen

March 7, 2011

1 Basic Java

Java is a high-level object oriented programming language. You write your programs in a Java source

�le. �e javac compiler turns them into object �les. �e object �les consist of byte code. Executing

a program is done by the Java virtual machine. It interprets the object �les at run time. �e program

starts executing with ‘the’ method main of the main class.

2 Classes and Objects

Oo programming lets you extend working programs without touching working code. All Java code is

developed in a class. Classes are used to de�ne/create objects. An object is called an instance of its class.

�e class is a blueprint of its instances. An object knows and does things. What it knows is determined

by its instance variables. �is is called the object’s state. What it does are its methods. �is is called the

object’s behaviour.

3 Variables

Primitive: �eir values are bits representing primitive type values.

Reference: A reference value references an object. �e value null doesn’t reference any object. Any

other reference value is like a remote control. Using the dot operator you control the remote: Lets

you access the value of an instance variable. Lets you call an instance method. Using dot operator

on null causes runtime error. Arrays are object too.

4 State and Behaviour

Classes de�ne what an objects may know and do.

State: Each object knows (the values of) its instance variables.

1

Behaviour: A method does things by calling its instance methods.

Instance methods may use instance variables. �is allows di�erent objects to have di�erent behaviour.

Method calls are carried out using the pass-by-value paradigm.

Methods have two kinds of parameters:

Formal: Name in the parameter list of a method de�nition.

Actual: Expression in the parameter list of a method call.

To evaluate a method call with n parameters:

1. For i from 1 to n (from le� to right):

(a) Evaluate the i th actual parameter.

(b) Create fresh variable to represent i th actual parameter.

(c) Assign result of evaluation to the fresh variable.

2. Carry out statements in the method body.

3. Return result (if any) and free up temporary variable space.

5 �e Java api

ArrayList is a class in the Java api. It is an example of a generic class: Class is parameterised over the

type of objects it contains.

Declaring: ArrayList<Integer> list;.

Creating: list = new ArrayList<Integer>();.

Adding: list.add(1);. Uses autoboxing.

Removing: list.remove(thing);.

…

6 Writing Classes

Classes contain variable and method de�nitions. Class variables/methods are static. �ey are owned

by the class they’re in. Instance variable/methods are non-static. �ey’re owned by instances of the

class they’re in. Visibility modi�ers restrict access to variables/method.

public class: Anywhere.

public instance: If you have an object reference.

2

private class: Inside the class.

private instance: Inside the class: also needs object reference.

Encapsulation helps protect class and instance variables. De�ning class and instance methods/attributes:

Instance attribute: If value determines object state.

Class attribute: If value determines class state.

Instance method: If it uses attributes of this.

Class method: If it doesn’t use attributes of this.

7 Inheritance and Polymorphism

A subclass extends its superclass. Subclass inherits all public instance variables/attributes. Inherited

methods de�ne common default behaviour. �ey allow for automatic code reuse. Inherited methods

can be overridden. �is allows you to de�ne class-speci�c behaviour. When an instance method is called,

the lowest overriden de�nition is used. Overloading a method: �e method has the same name, and

A di�erent list of parameter types. �e IS-A test determines when classes extend other classes: Dog
IS-A Canine. Cat IS-A Feline. But not: Animal IS-A Dog. And not: Conservatory IS-A House. Class

extension works only in one direction. Class extension is transitive.

8 Polymorphism

Polymorphism lets us use a subclass instance as if it is a superclass instance. Abstract classes are classes which

should not be instantiated. You mark them with the keyword abstract. �ey have abstract and concrete

methods. All abstract methods must be implemented in some concrete subclass. �e Object class is

Java’s ultimate superclass. An Interface is 100% abstract class: Interface methods are implicitly public

and abstract. Classes can only extend one superclass. �ey can implement more interfaces. Superclass

constructor may be called in own constructor: super() (but only as �rst statement). Overridden

superclass methods may also be called: super.method().

9 Exceptions

Risky methods may throw exceptions. An exception is a subclass of the Exception class. An exception

must be declared if it’s not a RunTimeException. Use throws Exception a�er method argument list.

You can “return” an exception by throwing it: throw new Exception(); Exceptions must eventually be

caught. Ignoring exceptions usually means more complicated handling. You catch exceptions with catch
block.

3

try {
…

} catch (Exception e) {
// handle it.

} finally {
// code that must always run.

}

Java

10 Special Classes

An nested class is a class within an other class. �ere are two kinds of nested classes.

Inner class: Access to all instance attributes/methods.

Static class: No access to all instance attributes/methods.

An anonymous class is a class without a name. Use them if the class is needed only once. An anonymous

class has access to all instance attributes. You create them like this: new Class() { 〈body body〉 }.

11 Events

Events let us deal with event-driven behaviour. To deal with events you need event handlers (listeners).

Di�erent events may require di�erent kinds of listeners. Detecting a button clicks requires listening to

an ActionEvent. Implement the ActionListener interface. Override the actionPerformed() method.

Register listener: button.addActionListener(listener). Usually, the litener is this. When the

user clicks the button listener.actionPerformed() is called. �is lets listener handle the event.

12 �reads

A thread is a separate thread of execution. Each thread has its own call stack. It is represented by a Thread
object. You create a Thread with a Runnable instance:

1. Runnable job = new Runnable();

2. Thread thread = new Thread(job);

3. thread.start();

Runnable is an interface. All you need to do is overriding void run().

Treads share their resources of the process they’re in. If threads don’t cooperate race conditions may

occur: �e output/result of the program is ill-de�ned. Program depends on right sequence/timing of

other events. Race conditions may be avoided by synchronising methods. Simply add synchronized
before return type. Synchronising the method allows at most one process inside the method. Unfortu-

nately, synchronisation may cause deadlock: Two or more threads are waiting for each other to return

from the method they’re in.

4

13 Enumerated Classes

Enumerated classes overcome enum int problems.

public enum Colour { RED, GREEN, BLUE; } Java

Enumerated constants may have constant-speci�c attributes.

public enum Example {
CONSTANT_A(1), CONSTANT_B(2);
private int value;
public Example(int value) { this.value = value; }

}

Java

�ey may also have constant-speci�c methods:

CONSTANT_A(1) { public void method() { … } },
CONSTANT_B(2) { public void method() { … } };
public abstract void method();
…

Java

14 Coding Conventions

Pay attention to them!

5

	Basic Java
	Classes and Objects
	Variables
	State and Behaviour
	The Java api
	Writing Classes
	Inheritance and Polymorphism
	Polymorphism
	Exceptions
	Special Classes
	Events
	Threads
	enum Classes
	Conventions

